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Abstract
The construction of conserved vectors using Noether’s theorem via a knowledge
of a Lagrangian (or via the recently developed concept of partial Lagrangians)
is well known. The formulas to determine these for higher order flows
are somewhat cumbersome but peculiar and become more so as the order
increases. We carry out these for a class of high-order partial differential
equations from mathematical physics and then consider some specific ones
with mixed derivatives. In the latter set of examples, our main focus is that
the resultant conserved flows display some previously unknown interesting
‘divergence properties’ owing to the presence of the mixed derivatives. Overall,
we consider a large class of equations of interest and construct some new
conservation laws.

PACS numbers: 02.30.Jr, 02.30.Xx, 05.10.-a

1. Introduction

When considering the construction of conservation laws via Noether’s theorem using a
Lagrangian or a ‘partial Lagrangian’, an interesting situation arises when the equations under
investigation are such that the highest derivative term is mixed; the mixed derivative term is
the one that involves differentiation by more than one of the independent variables. When
substituting the conserved flow back into the divergence relationship, a number of ‘extra’ terms
(on which the Euler operator vanishes) arise. Thus, we have essentially ‘trivial’ conserved
quantities that need to be fed back into the conserved vectors that are computed initially via
Noether’s theorem—these are necessary terms that may guarantee the notion of ‘association’
between conserved flows and symmetries (see [2, 13, 14])—otherwise, the total divergence
of the computed conserved flows is the equations modulo the trivial part. Sometimes, there
may be no association of a conservation law with a symmetry. However, the association
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is established by merely including a specific total divergence (trivial part). The manner in
which this is carried out is defined in [16]. Thus, the ‘extra’ divergence terms that appear
in the particular type of examples studied here are significant in establishing or rejecting a
connection between a given symmetry and a conservation law.

Firstly, a variety of high-order equations are studied. For example, the fifth-order KdV
and fourth-order Boussinesq equations are well-known examples from mathematical physics
purported to be of ‘high’ order. For these and any high-order partial differential equations
(PDEs), finding conservation laws by first principles can be extremely tedious. Thus, one
needs to resort to alternate methods appealing to the underlying symmetry generators of the
equations. If this means the variational route, then there may be problems such as the existence
and determination of a Lagrangian. For the two cases cited here, we construct a ‘weak’ or
‘partial’ Lagrangian and successfully construct conservation laws. The point of emphasis is
the cumbersome formulas that are required in the determination of the conserved flows due to
the order of the Lagrangians and related functions.

Other examples we consider are the fourth-order shallow-water wave and regularized
long-wave equations. These equations have their importance in many areas of physics,
and real-world applications, e.g. tsunamis which are characterized with long periods and
wavelengths; as a result they behave as shallow-water waves. Also, we study the well-known
Camassa–Holms, Hunter–Saxton, inviscid Burgers and KdV family of equations—identifying
the consequences of mixed highest derivative terms in the PDE.

The practical and mathematical role of conservation laws is now well established (see [4]
and references therein). Firstly, the conserved vectors provide a mechanism for reducing a
PDE via potential variables to potential systems and one can analyze the PDE by studying the
reduced potential form [12]. In contrast, some of the other conservation laws have a physical
meaning, such as conservation of linear/angular momentum and energy, and Lorentz rotation.
Furthermore, the quantitative and qualitative properties of solutions of PDEs are established
through conservation laws. For example, a numerical solution of PDEs can be checked via a
knowledge of the underlying conservation laws, i.e. one could check that conserved quantities
indeed remain constant. See also [5, 6, 19, 22, 24].

We present the notation and preliminaries that will be used.
Consider an rth-order system of partial differential equations of n independent variables

x = (x1, x2, . . . , xn) and m dependent variables u = (u1, u2, . . . , um)

Gμ(x, u, u(1), . . . , u(r)) = O, μ = 1, . . . , m̃, (1.1)

where u(1), u(2), . . . , u(r) denote the collections of all first-, second-, . . ., rth-order partial
derivatives, that is uα

i = Di(u
α), uα

ij = DjDi(u
α), . . . respectively, with the total

differentiation operator with respect to xi given by

Di = ∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · , i = 1, . . . , n, (1.2)

where the summation convention is used whenever appropriate.
A current T = (T 1, . . . , T n) is conserved if it satisfies

DiT
i = 0 (1.3)

along the solutions of (1.1).
Suppose A is the universal space of differential functions. A Lie–Bäcklund operator is

given by

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+ ζ α

i

∂

∂uα
i

+ ζ α
i1i2

∂

∂uα
i1i2

+ · · · , (1.4)
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where ξ i, ηα ∈ A and the additional coefficients are

ζ α
i = Di(W

α) + ξ juα
ij ,

ζ α
i1i2

= Di1Di2(W
α) + ξ juα

ji1i2
,

...

(1.5)

and Wα is the Lie characteristic function defined by

Wα = ηα − ξ juα
j . (1.6)

Here, we will assume that X is a Lie point operator, i.e. ξ and η are functions of x and u and
are independent of derivatives of u, respectively.

The Euler–Lagrange equations, if they exist, associated with (1.1) are the system
δL/δuα = 0, α = 1, . . . , m, where δ/δuα is the Euler–Lagrange operator given by

δ

δuα
= ∂

∂uα
+

∑
s�1

(−1)sDi1 · · · Dis

∂

∂uα
i1···is

, α = 1, . . . , m. (1.7)

L is referred to as a Lagrangian and a Noether symmetry operator X of L arises from a study
of the invariance properties of the associated functional

L =
∫

�

L(x, u, u(1), . . . , u(r)) dx (1.8)

defined over �. If we include point-dependent gauge terms f1, . . . , fn, the Noether symmetries
X are given by

XL + LDiξ
i = Difi. (1.9)

Corresponding to each X, a conserved flow is obtained via Noether’s theorem.
For partial Lagrangians (see [15]), L, the Noether-type generators, X, are determined

by

XL + LDiξ
i = Wα δL

δuα
+ Difi (1.10)

and the conserved vector from the expression as in Noether’s theorem (see [21]).
A further detailed analysis of the operators is completely given below for the scalar

case in two dimensions, namely (x1, x2) = (t, x). This discussion is peculiar to our
work in the following as the Lagrangians and conserved flows are of high order (third
order). The proofs and finer details of the results are obtainable in [9]. Suppose
X = τ(t, x, u)∂t + ξ(t, x, u)∂x + φ(t, x, u)∂u is a Noether point symmetry generator with
gauge (f, g). Then the conserved flow (T t , T x) (or (T 1, T 2)) is given by

T t = Lτ + W
δL

δut

+ Dt(W)
δL

δutt

+ Dx(W)
δL

δutx

+ DtDt(W)
δL

δuttt

+ DtDx(W)
δL

δutx

+ DxDx(W)
δL

δutxx

= Lτ + W

(
∂L

∂ut

− Dt

∂L

∂utt

− Dx

∂L

∂utx

+ D2
t

∂L

∂uttt

+ D2
x

∂L

∂utxx

+ DtDx

∂L

∂uttx

)

+ Dt(W)
δL

δutt

+ Dx(W)
δL

δutx

+ DtDt(W)
δL

δuttt

+ DtDx(W)
δL

δutx

+ DxDx(W)
δL

δutxx

,
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T x = Lξ + W
δL

δux

+ Dt(W)
δL

δuxt

+ Dx(W)
δL

δuxx

+ DtDt(W)
δL

δuxtt

+ DtDx(W)
δL

δuxxt

+ DxDx(W)
δL

δuxxx

= Lξ + W

(
∂L

∂ux

− Dt

∂L

∂uxt

− Dx

∂L

∂uxx

+ D2
t

∂L

∂uxtt

+ D2
x

∂L

∂uxxx

+ DtDx

∂L

∂utxx

)

+ Dt(W)
δL

δuxt

+ Dx(W)
δL

δuxx

+ DtDt(W)
δL

δuxtt

+ DtDx(W)
δL

δuxxt

, (1.11)

where

δ

δv
= ∂

∂v
− Dt

∂

∂vt

− Dx

∂

∂vx

+ D2
t

∂

∂vtt

+ D2
x

∂

∂vxx

+ DtDx

∂

∂vtx

− · · · . (1.12)

A range of literature pertaining to conservation laws is now available mainly presenting
the various methods involved, see [16, 21].

2. High-order equations—illustrative

2.1. The fifth-order KdV equation

The propagation of surface waves in a shallow channel of constant depth is described by the
well-known KdV equation. It is derived from the equations of hydrodynamics for an inviscid,
irrotational, incompressible fluid. If one carries to the next order, one obtains an evolution
equation with a fifth-order derivative, called the fifth-order KdV equation. The particular case
that we investigate is the well-known generalized fifth-order KdV equation:

vt + β/2vvxxx + αvxvxx + γ v2vx + vxxxxx = 0, (2.1)

which, for a variety of combinations of the parameters, has been studied using a number
of methods, analytical and numerical. Inc [10] and Abbasandy and Zakaria [1] made a
detailed numerical study using the Adomian decomposition and homotopy analysis methods,
respectively. Several works on the soliton solutions and various analytical methods have
been done. For example, Lax [19] (β/2 = 10, α = 20, γ = 30), Sawada-Kotera [23]
(β/2 = 5, α = 5, γ = 5), Ito [11] (β/2 = 3, α = 6, γ = 2). The well-known Kaup–
Kuperschmidt equation is based on the case β/2 = −15, α = −15, γ = 45. It can be
shown that the equation is Hamiltonian for β = 2α on the principle vt = Dx(δH), where
H = − ∫

(αuuxx + α/2u2
x + γ /(12)u4 + 1/2u2

xx)dx.
The standard third-order KdV equation is an evolution equation, but its differential

consequence admits a Lagrangian [8] and, thus, the KdV equation itself is construed as a
variational equation. We show that one can do this for (2.1) by which some interesting results
regarding conservation laws via Noether’s theorem are obtained. This analogous study of the
fifth-order KdV has not, to the knowledge of the authors, been carried out before. This may
be due to the cumbersome forms of the extended Euler–Lagrange operators that need to be
used. If v = ux in (2.1), we obtain the sixth-order equation

uxt + β/2uxuxxxx + αuxxuxxx + γ u2
xuxx + uxxxxxx = 0, (2.2)

which has a partial Lagrangian

L = − [
1
2u2

xxx + 1
2uxut + γ /2u4

x + β/8u2
xuxxx

]
(2.3)
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so that
δL

δu
= uxt + β/2uxuxxxx + γ u2

xuxx + uxxxxxx = (β − α)uxxuxxx (2.4)

in (1.10). The separation of monomials is

utu
2
xuxxx : τu,

utu
2
xuxxuxxx : τuu,

u2
xuxxuxxx : ξuu,

uxu
2
xxx : ξu,

u3
xuxxx : φuuu,

uxxxuxxt : τx,

u2
xxx :

5

2
ξx − 1

2
τt − φu,

u2
xuxxx :

1

2

[
5β

4
ξx − 1

4
β(ξx + τt ) − 3β

4
φu − 6φxuu

]
,

uxuxxuxxx : (−α + β)ξ − 3φuu,

utuxxuxxx : (−α + β)τ,

uxxuxxx : −(−α + β)φ + 3ξxx − 3φxu,

uxuxxx : −3

4
βφxφ + ξxxx − 3φxxu,

uxxx : −φxxx,

u3
xuxx : −3

8
βφuu,

u2
xuxx :

1

2

(
3

4
βξxx − 3

4
bφxu

)
,

u4
x :

9

4
ξx − 9

12
τt − 9

3
φu,

u3
x : −9

3
φu +

1

8
βξxxx,

u2
x : ξt ,

utux :
1

2
ξx +

1

2
(−ξx − τt ) +

1

2
τt − φu,

ut : −fu − 1

2
φx,

ux : −gu − 1

2
φt ,

1 : −ft − gx.

(2.5)

This leads to a nontrivial solution only if α = β. That is, the partial Lagrangian is, in fact,
a Lagrangian of (2.2) and the generators are the corresponding Noether symmetries, namely

∂t (W = −ut ), ξ(t)∂x (W = −ξux). (2.6)

5
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We now list the corresponding conserved vectors.

(i) ∂t (W = −ut )

T t = −
[

1

2
u2

xxx +
1

2
uxut +

γ

12
u4

x +
β

8
u2

xuxxx

]
(1) + [−ut ]

[
−1

2
ux

]
,

= −1

2
u2

xxx − 1

2
uxut − γ

12
u4

x − β

8
u2

xuxxx +
1

2
uxut ,

= −1

2
u2

xxx − γ

12
u4

x − β

8
u2

xuxxx,

T x = [−ut ]

[
−1

2
ut − γ

3
u3

x − β

4
uxuxxx + D2

x

(
−uxxx − β

8
u2

x

)]

+ Dx(−ut )

[
−Dx

(
−uxxx − β

8
u2

x

)]
+ D2

x(−ut )

[
−uxxx − β

6
u2

x

]
,

= (ut )

[
1

2
ut + uxxxxx + D2

x

(
β

8
u2

x

)]
+ (−utx)

[
uxxxx +

β

4
uxuxx

]

+ (utxx)

[
uxxx +

β

8
u2

x

]

= (ut )

[
1

2
ut + uxxxxx +

β

4
u2

xx +
β

4
uxuxxx

]
+ (−utx)

[
uxxxx +

β

4
uxuxx

]

+ (utxx)

[
uxxx +

β

8
u2

x

]
.

Thus, DtT
t + DxT

x = ut

[
uxt + β/2uxuxxxx + βuxxuxxx + γ u2

xuxx + uxxxxxx

] = 0.
(ii) ξ(t)∂x (W = −ξux)

T t = −ξux

[
−1

2
ux

]
,

= 1

2
ξu2

x,

T x = −ξ

[
1

2
u2

xxx +
γ

12
u4

x +
β

8
u2

xuxxx

]
+ ξux

[
uxxxxx +

β

4
u2

xx +
β

4
uxuxxx

]

− ξuxx

[
uxxxx +

β

4
uxuxx

]
+ ξuxxx

[
uxxx +

β

8
u2

x

]
+ ξux

[γ

3
u3

xxx +
γ

4
uxuxxx

]
.

Thus, DtT
t + DxT

x = ξ(t)ux

[
uxt + β/2uxuxxxx + βuxxuxxx + γ u2

xuxx + uxxxxxx

] = 0.

Remark. The conserved vector in (i) is of ‘nonlocal’ type for the fifth-order KdV
equation (2.1) when we substitute back to v since, if v = ux , ut = ∫

vtdx.

2.2. The fourth-order Boussinesq equation

The family of Boussinesq equations describing the bidirectional propagation of waves in
shallow water (or the behavior of long waves) is sometimes written as the fourth-order equation:

uxxxx + uuxx + u2
x + utt = 0. (2.7)

6
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Its Noether-type symmetries, X = τ(t, x, u)∂t + ξ(t, x, u)∂x + φ(t, x, u)∂u, via the partial
Lagrangian L = 1

2u2
xx − 1

2u2
t − 1

2uu2
x

(
δL
δu

= − 1
2u2

x

)
are determined by (1.10). In this case,

XL is a second prolongation of X, namely

XL = − 1
2φu2

x + utuxξt + u2
t uxξu + uu3

xξu + uu2
xξx + u2

t τt + u3
t τu + uutu

2
xτu + uutuxτx

− utφt − u2
t φu − uu2

xφu − uuxφx − 2uxτuux,tux,x − 2τxux,tux,x − 3uxξuu
2
x,x

− 2ξxu
2
x,x − utτuu

2
x,x + φuu

2
x,x − u3

xux,xξu,u − 2u2
xux,xξx,u − uxux,xξx,x (2.8)

− utu
2
xux,xτu,u − 2utuxux,xτx,u − utux,xτx,x + u2

xux,xφu,u + 2uxux,xφx,u

+ ux,xφx,x,

which is substituted into (1.10). Separation by monomials then lead to

utuxxu
2
x : −τuu,

utuxxux : −2τxu,

uxxu
3
x : −ξuu,

uxxu
2
x : −2ξxu + φuu,

uxxux : −ξxx + 2φxu,

uxxuxt : τx,

u2
xxux : ξu,

u2
xx : − 3

2ξx + 1
2τt + φu,

uxx : φxx,

utu
2
x : − 1

2τ + 1
2uτu,

utux : ξt ,

u3
t : 1

2τu,

u3
x : − 1

2ξ + 1
2uξu,

u2
x : 1

2uξx − 1
2uτt − uφu,

ut : −fu − φt ,

ux : −gu − uφx,

1 : −ft − gx.

(2.9)

The overdetermined system has solution

τ = 0, ξ = 0, φ = A + Bt + Cx + Dxt,

f = −(B + Dx)u + a(x, t), g = − 1
2 (C + Dt)u2 + b(x, t)

(2.10)

where at + bx = 0 and A, B, C and D are arbitrary constants. If we choose, for example,
A = D = 0 (Noether-type symmetry X = (Bt + Cx)∂u, W = (Bt + Cx), f = −Bu and
g = − 1

2Cu2), we obtain, via a truncated version of (1.11), i.e.,

T t = Lτ + W
∂L

∂ut

+ [DjW − WDj ]
∂L

∂utj

− f,

T x = Lξ + W
∂L

∂ux

+ [DjW − WDj ]
∂L

∂uxj

− g,

(2.11)

7
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the conserved density and flux

T t = −(Bt + Cx)ut + Bu

T x = −(Bt + Cx)uux + Cuxx − (Bt + Cx)uxxx + 1
2Cu2.

(2.12)

so that DtT
t + DxT

x = −(Bt + Cx)
(
uxxxx + uuxx + u2

x + utt

)
.

3. Applications 2—mixed derivative case

3.1. Camassa–Holms, Hunter–Saxton, inviscid Burgers and KdV family of equations

The Camassa–Holms and Hunter–Saxton equations correspond to the equations of the geodesic
flow with respect to different right-invariant Riemannian metrics on this group or on an
associated homogeneous space [16]. Alternatively stated, the geometric interpretation of
the Camassa–Holm equation is a geodesic flow equation on the group of diffeomorphisms,
preserving the H1 right-invariant metric. Also, the Hunter–Saxton equation describes the
propagation of waves in a massive director field of a nematic liquid crystal.

We now consider the family of equations

α(vt + 3vvx) − β(vtxx + 2vxvxx + vvxxx) − γ vxxx = 0. (3.1)

Even though it represents a class of nonlinear evolution equations, it displays
variational/Hamiltonian properties and would then be subject to, amongst other things,
Noether’s theorem [21]. This is well documented in the case of the KdV equation [8].
Also, it displays interesting soliton or soliton-like solutions. Equation (3.1) represents a
version of the KdV equation (α = 1, β = 0), the Camassa–Holm equation (α = 1, β = 1),
the Hunter–Saxton equation (α = 0, β = 1) and the inviscid Burgers equation ut + 3uux = 0
[3, 7, 18]. We modify this equation by letting v = ux to obtain

α(utx + 3uxuxx) − β(utxxx + 2uxxuxxx + uxuxxxx) − γ uxxxx = 0. (3.2)

Equation (3.2) displays variational properties with respect to the Lagrangian

L = −α

2

(
uxut + u3

x

) − β

2

(
uxu

2
xx + utxuxx

) − γ

2
u2

xx. (3.3)

The symmetries and corresponding conserved vectors are as follows.

(i) X = ∂t , W = −ut

The conserved quantities are T 1 = −α
2

(
utux + u3

x

) − β

2

(
uxu

2
xx + utxuxx

) − γ

2 u2
xx +

(−ut )
( − α

2 ux + β

2 uxxx

)
+ (−utx)

( − β

2 uxx

)
and T 2 = (−ut )

( − α
2 ut − 3α

2 u2
x + β

2 u2
xx +

βutxx + βuxuxxx + γ uxxx

)
+ (−utt )

( − β

2 uxx

)
+ (−uxx)

( − βuxuxx − β

2 utx − γ uxx

)
.

The total divergence is

Dt(T
1) + Dx(T

2) = 2γ uxxuxxx − γ utxuxxx − γ uxxutxx +
1

2
βuxxutxx

+
1

2
βutxuxxx − βutxutxx − β

2
ututxxx + 2βuxuxxuxxx + βu3

xx (3.4)

−βuxuxxutxx − βuxutxuxxx +
β

2
uxxuttx − β

2
utxutxx .

8
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As before, extra terms that require further analysis emerge. By making an adjustment to
these terms, they can be absorbed into the conservation law if we note that

Dt(T
1) + Dx(T

2) = Dx

(
γ u2

xx

) − Dx(γ utxuxx) + Dx

(
β

2
utxuxx

)

−Dx

(
β

2
ututxx

)
+ Dx

(
βuxu

2
xx

) − Dx(uxutxuxx) (3.5)

−Dx

(
β

2
u2

tx

)
+ Dt

(
β

2
utxuxx

)
.

Then by taking these differentials across and adding them to the conserved flows, this
satisfies the conservation law. The modified conserved quantities are now labeled T̃ i ,
where Dt(T̃ 1) + Dx(T̃ 2) = 0 along the equation, namely

T̃ 1 = T 1 − β

2
utxuxx,

T̃ 2 = T 2 − γ u2
xx + γ utxuxx − β

2
utxuxx +

β

2
ututxx − βuxu

2
xx − uxutxuxx +

β

2
u2

tx .

(3.6)

The same applies to the following cases.
(ii) X = ∂x, W = −ux

With T 1 = (−ux)
( − α

2 ux + β

2 uxxx

)
+ (−uxx)

( − β

2 uxx

)
and T 2 = −α

2

(
uxut + u3

x

) −
β

2

(
uxu

2
xx + utxuxx

) − γ

2 u2
xx + (−ux)

( − α
2 ut − 3α

2 u2
x + β

2 u2
xx + βutxx + βuxuxxx + γ uxxx

)
+

(−utx)
( − β

2 uxx

)
+ (−uxx)

( − βuxuxx − β

2 utx − γ uxx

)
we get

Dt(T
1) + Dx(T

2) = − 1
2β(uxutxxx − uxxutxx), (3.7)

so that, since − 1
2β(uxutxxx − uxxutxx) has derivative consequences,

− 1
2β(uxutxxx − uxxutxx) = − 1

2β
(
Dx

(
uxuxx − Dt

(
u2

xx

))
, (3.8)

and a redefinition leads to

T̃ 1 = T 1 − 1
2βu2

xx,

T̃ 2 = T 2 + 1
2βuxuxx.

(3.9)

(iii) X = n(t)∂u, W = n(t)

Here, we get T 1 = (n(t))
(− α

2 ux + β

2 uxxx

)
and T 2 = (n(t))

(− α
2

(
uxut +u3

x

)− β

2

(
uxu

2
xx +

utxuxx

) − γ

2 u2
xx

)
+ (nt (t))

( − β

2 uxx

)
+ α

2 nt (t)u, so that

Dt(T
1) + Dx(T

2) = − 1
2n(t)βutxxx, (3.10)

and

T̃ 1
2 = T 1,

T̃ 2
2 = T 2 + 1

2n(t)βutxx.
(3.11)

3.2. The shallow-water wave equation

The shallow-water wave equation (SWW) models basic water waves that reasonably
approximate the behavior of real ocean waves, namely

uxxxt + αuxutx + βutuxx − utx − uxx = 0, (3.12)

where α and β are arbitrary constants. From equation (3.12), we separate the cases, (1) α �= β

and (2) α = β.

9
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Case (1) α �= β will be referred to as shallow-water wave-1 (SSW-1), and corresponding
to case (2) α = β, in (3.12), α is replaced by β, and referred to as the shallow-water wave-2
(SSW-2), namely

uxxxt + βuxutx + βutuxx − utx − uxx = 0. (3.13)

3.2.1. Shallow-water wave-1 (SSW-1). Here, we use the partial Lagrangian

L = 1
2utxuxx + 1

2u2
x + 1

2uxut − 1
2βutu

2
x, (3.14)

for which
δL

δu
= (2β − α)utxux. (3.15)

Substituting into (1.10) and separating by monomials, we obtain the system

uxu
2
tx : τu,

u2
tx : τx,

uxu
2
xx : ξu,

u2
xx : ξt ,

utxuxx : ηu − ξx,

utuxutx : (2β − α)τ,

u2
xutx : (2β − α)ξ,

uxutx : (2β − α)η,

utu
2
x : ξx − 3ηu,

utux : ηu − βηx,

u2
x : ηu − 1

2βηt − 1
2ξx + 1

2τt ,

ux : −gu + 1
2ηt + ηx,

ut : −fu + 1
2ηx,

1 : ft + gx.

(3.16)

From equation (3.16), we observe that there are two cases that emerge: (a) α = 2β and
(b) α �= 2β.

Subcase (a): α = 2β leads to the following generators and conserved vectors.

(i) X = ∂t , W = −ut

The conserved flow is given by T 1 = 1
2u2

x + 1
2utuxxx and T 2 = −utux − 1

2u2
t + u2

t uxβ +
utuxxt − 1

2u2
xt − 1

2uxxutt . The divergence becomes

Dt(T
1) + Dx(T

2) = Dt

(
1
2u2

x + 1
2utuxxx

)
+ Dx

(−utux − 1
2u2

t + u2
t uxβ + utuxxt − 1

2u2
xt − 1

2uxxutt

)
,

= uxutx + 1
2uxxxutt + 1

2utuxxxt − uxutx − utuxx − 1
2uxxuttx

− ututx + 2βutuxutx + βu2
t uxx + utuxxxt − 1

2uxxxutt ,

= ut (uxxxt + αuxutx + βutuxx − utx − uxx) + 1
2utuxxxt − 1

2uxxuxtt ,

= 1
2utuxxxt − 1

2uxxuxtt . (3.17)

10
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We observe that extra terms emerge. By some adjustments, these terms can be absorbed
into the conservation law. That is,

Dt(T
1) + Dx(T

2) = 1
2utuxxxt − 1

2uxxuxtt ,

= 1
2Dt(utuxxx) − 1

2Dx(uxxutt ). (3.18)

Taking these terms across and including them into the conserved flows, we get

Dt(T
1 − 1

2utuxxx) + Dx(T
2 + 1

2uxxutt ) = 0. (3.19)

The modified conserved quantities are now labeled T̃ i , where Dt(T̃ 1) + Dx(T̃ 2) = 0
modulo the equation. Then

T̃ 1 = T 1 − 1
2utuxxx,

= 1
2u2

x

T̃ 2 = T 2 + 1
2uxxutt ,

= −utux − 1
2u2

t + u2
t uxβ + utuxxt − 1

2u2
xt .

(3.20)

We have a similar situation below.
(ii) X = ∂x, W = −ux

The conserved flow is given by T 1 = − 1
2u2

x + 1
2u3

xβ − 1
2u2

xx + 1
2uxuxxx and T 2 =

− 1
2u2

x + 1
2utu

2
xβ + uxuxxt − 1

2uxxuxt so that a redefinition leads to

T̃ 1 = T 1 − 1
2u2

xx,

= − 1
2u2

x + 1
2u3

xβ − 1
2u2

xx

T̃ 2 = T 2 − 1
2uxuxxt ,

= − 1
2u2

x + 1
2utu

2
xβ + uxuxxt .

(3.21)

Subcase (b): α �= 2β. The symmetry generators and conserved vectors are as follows.

(i) X = ∂u, B1 = 1
2u2

x(2β − α), B2 = 0, W = 1
The conserved flow is given by T 1 = 1

2ux − 1
2βu2

x − 1
2uxxx + 1

2u2
x(2β − α) and

T 2 = ux + 1
2ut − utuxβ − uxxt for the total divergence is

Dt(T
1) + Dx(T

2) = Dt

(
1
2ux − 1

2βu2
x − 1

2uxxx + 1
2u2

x(2β − α)
)

+ Dx(ux + 1
2ut − utuxβ − uxxt ),

= 1
2utx − uxutxβ − 1

2uxxxt + uxutx(2β − α)

+ uxx + 1
2utx − uxutxβ − utuxxβ − uxxxt ,

= (uxxxt + αuxutx + βutuxx − utx − uxx) − 1
2uxxxt ,

= − 1
2uxxxt .

(3.22)

From equation (3.22), uxxxt has two derivative consequences,

uxxxt = Dt(uxxx),

= Dx(uxxt ),
(3.23)

which lead to two possible forms of the same conserved quantity, namely

T̃ 1
1 = T 1 + 1

2uxxx,

= 1
2ux − 1

2βu2
x + 1

2u2
x(2β − α)

T̃ 2
1 = T 2,

= ux + 1
2ut − utuxβ − uxxt

(3.24)

11
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or

T̃ 1
2 = T 1,

= 1
2ux − 1

2βu2
x − 1

2uxxx + 1
2u2

x(2β − α)

T̃ 2
2 = T 2 + 1

2uxxt ,

= ux + 1
2ut − utuxβ − 1

2uxxt .

(3.25)

(ii) X = ∂x, B1 = 1
3u3

x(2β − α), B2 = 0, W = −ux

We get T 1 = 1
2u2

x + 1
2u3

xβ − 1
2u2

xx − 1
3u3

x(2β − α) − 1
2uxuxxx and T 2 = 1

2u2
x + 1

2utu
2
xβ +

uxuxxt − 1
2uxxuxt so that

T̃ 1 = T 1 + 1
2u2

xx,

= 1
2u2

x + 1
2u3

xβ − 1
2u2

xx − 1
3u3

x(2β − α)

T̃ 2 = T 2 − 1
2uxuxxt ,

= 1
2u2

x + 1
2utu

2
xβ + uxuxxt .

(3.26)

3.2.2. Shallow-water wave-2 (SSW-2). For equation (3.13), we use the partial Lagrangian

L = 1
2utxuxx + 1

2u2
x + 1

2uxut − 1
2βutu

2
x, (3.27)

so that
δL

δu
= βutxux. (3.28)

The separation of monomials after substitution into (1.10) gives rise to

uxu
2
tx : τu,

u2
tx : τx,

uxu
2
xx : ξu,

u2
xx : ξt ,

utxuxx : ηu − ξx,

utuxutx : βτ,

u2
xutx : βξ,

uxutx : βη,

utu
2
x : ξx − 3ηu,

utux : ηu − βηx,

u2
x : ηu − 1

2βηt − 1
2ξx + 1

2τt ,

ux : −gu + 1
2ηt + ηx,

ut : −fu + 1
2ηx,

1 : ft + gx,

(3.29)

from which we clearly need to separate β �= 0 or β = 0.
If β �= 0,we have a trivial solution, and if β = 0, then equation (3.13) changes to

uxxxt − utx − uxx = 0 (3.30)

12
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and the partial Lagrangian (3.27) becomes a standard Lagrangian

L = 1
2utxuxx + 1

2u2
x + 1

2uxut , (3.31)

and the conserved quantities are as follows.

(i) X = ∂t , W = −ut

The conserved quantities T 1 = 1
2u2

x + 1
2utuxxx and T 2 = −utux − 1

2u2
t + utuxxt − 1

2u2
xt −

1
2uxxutt lead to a redefinition

T̃ 1 = T 1 − 1
2utuxxx,

= 1
2u2

x

T̃ 2 = T 2 + 1
2uxxutt ,

= −utux − 1
2u2

t + utuxxt − 1
2u2

xt .

(3.32)

(ii) X = ∂x, W = −ux

Similarly, we obtain T 1 = − 1
2u2

x − 1
2u2

xx + 1
2uxuxxx and T 2 = − 1

2u2
x + uxuxxt − 1

2uxxuxt

so that

T̃ 1 = T 1 − 1
2u2

xx,

= − 1
2u2

x − 1
2u2

xx

T̃ 2 = T 2 − 1
2uxuxxt ,

= − 1
2u2

x + uxuxxt .

(3.33)

3.3. The regularized long-wave equation

The regularized long-wave equation (RLW) is sometimes referred to as the Benjamin–Bona–
Mahoney equation and is shown to possess soliton-type solutions. Solitary waves are wave
packets or pulses which propagate in nonlinear dispersive media. Due to dynamical balance
between the nonlinear and dispersive effects, these waves retain a stable waveform. A soliton
is a very special type of solitary wave, which also keeps its waveform after collision with other
solitons. The RLW

vtxx + αv2vx + vt + vx = 0 (3.34)

is an alternative description of nonlinear dispersive waves to the more Korteweg–de Vries
(KdV) equation. While it is a third-order equation, for our purposes of investigation, we
modify this equation, as above, to deal with it in a variational or partial variational way. We
refer to the modified RLW, wherein we set v = ut , as RLW-1, namely

uxxtt + αu2
t utx + utt + utx = 0. (3.35)

Alternatively, when v = ux , we get RLW-2 given by

uxxxt + αu2
xuxx + utx + uxx = 0. (3.36)

3.3.1. Regularized long-wave-1 (RLW-1). Here, we use the partial Lagrangian

L = 1
2u2

tx − 1
2utux − 1

2u2
t (3.37)

for which
δL

δu
= −αu2

t utx . (3.38)
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As before, we obtain Noether-type symmetry generators based on L with the following
associated conserved flows which require redefinition so as to fit the PDE. The overdetermined
system in question is

uxxutx : ξt + utξu,

uttutx : τx + uxτu,

u2
tx : ηu − 1

2ξx − 1
2τt ,

uxu
2
t utx : αξ,

utu
2
t utx : ατ,

u2
t utx : αη,

utuxutx : ηuu,

ututx : ηtu,

uxutx : ηxu,

utx : ηtx,

uxut : ηu,

u2
t : , ηu + 1

2ξx + 1
2τt

ux : −gu − 1
2ηt ,

ut : −fu − ηt − 1
2ηx,

1 : ft + gx.

(3.39)

It is clear that if α �= 0, then no symmetry generators are obtained and if α = 0, then equation
(3.35) becomes

uxxtt + utt + utx = 0 (3.40)

and the partial Lagrangian becomes a standard Lagrangian. In this case, we have the following
result.

(i) X = ∂t , W = −ut

The Noether conserved vector components are T 1 = − 1
2u2

tx + 1
2u2

t + ututxx and
T 2 = 1

2u2
t + ututtx − uttutx so that

Dt(T
1) + Dx(T

2) = Dt

(− 1
2u2

tx + 1
2u2

t + ututxx

)
+ Dx

(
1
2u2

t + ututtx − uttutx

)
,

= −utxuttx + ututt + uttutxx + ututtxx + ututx

+ utxuttx + ututtxx − utxuttx + uttutxx,

= ututtxx − utxuttx .

(3.41)

A redefinition leads to the conserved vector
T̃ 1 = T 1 − ututxx,

= − 1
2u2

tx + 1
2u2

t

T̃ 2 = T 2 + uttutx,

= 1
2u2

t + ututtx .

(3.42)

(ii) X = ∂x, W = −ux

We get T 1 = 1
2u2

x + utux + uxutxx − u2
tx and T 2 = − 1

2u2
tx − 1

2u2
t + uxuttx with

T̃ 1 = T 1 + uttutx,

= 1
2u2

x + utux + uxutxx − u2
tx + uttutx

T̃ 2 = T 2 − uxuttx,

= − 1
2u2

tx − 1
2u2

t .

(3.43)
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(iii) X = ∂u, W = 1
T 1 = − 1

2ux − ut − utxx and T 2 = − 1
2ut − uttx and

T̃ 1
1 = T 1 + utxx,

= − 1
2ux − ut

T̃ 2
1 = T 2,

= − 1
2ut − uttx

(3.44)

or

T̃ 1
2 = T 1,

= − 1
2ux − ut − utxx

T̃ 2
2 = T 2 + uttx,

= − 1
2ut .

(3.45)

(iv) X = t∂u, W = t, f = −u, g = − 1
2u

T 1 = − 1
2 tux − tut − tutxx − u and T 2 = − 1

2 tut − tuttx + utx − 1
2u with

T̃ 1
1 = T 1,

= − 1
2 tux − tut − tutxx − u

T̃ 2
1 = T 2 + tuttx,

= − 1
2 tut + utx − 1

2u

(3.46)

or

T̃ 1
2 = T 1 + tutxx,

= − 1
2 tux − tut − u

T̃ 2
2 = T 2 − utx,

= − 1
2 tut − tuttx − 1

2u.

(3.47)

3.3.2. Regularized long-wave-2 (RLW-2). Here, we use the partial Lagrangian

L = 1
2uxxutx − 1

2utux − 1
2u2

x (3.48)

for which
δL

δu
= −αu2

xutx (3.49)

and as above α �= 0 leads to no generators α = 0 produces the following Noether symmetries
and conserved vectors.

(i) X = ∂t , W = −ut

T 1 = − 1
2u2

x + 1
2utuxxx and T 2 = 1

2u2
t + utux + ututxx − 1

2u2
tx − 1

2uttuxx lead to

T̃ 1 = T 1 − 1
2utuxxx,

= − 1
2u2

x

T̃ 2 = T 2 + 1
2uttuxx,

= 1
2u2

t + utux + ututxx − 1
2u2

tx .

(3.50)
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(ii) X = ∂x, W = −ux

T 1 = 1
2u2

x + 1
2uxuxxx − 1

2u2
xx and T 2 = 1

2u2
x + uxutxx − 1

2utxuxx lead to

T̃ 1 = T 1 + 1
2u2

xx,

= 1
2u2

x + 1
2uxuxxx

T̃ 2 = T 2 − 1
2uxutxx,

= 1
2u2

x − 1
2utxuxx + 1

2uxutxx.

(3.51)

(iii) X = x∂u, W = x, f = − 1
2u, g = −u

T 1 = − 1
2xux − 1

2xuxxx + 1
2uxx + 1

2u and T 2 = − 1
2xut − xux − xutxx + 1

2utx + u so that

T̃ 1 = T 1,

= − 1
2xux − 1

2xuxxx + 1
2uxx + 1

2u,

T̃ 2 = T 2 − 1
2utx + 1

2xutxx,

= − 1
2xut − xux − 1

2xutxx + u.

(3.52)

4. Discussion and conclusion

We used the Noether identity to find symmetry generators and then conservation laws for
some high-order equations containing mixed derivatives in the highest term. All the conserved
vectors in the equations with highest order possessing mixed derivatives produce extra terms
that become essential parts of the constructed conserved vector for the equation in question.
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